HOME > 研究業績詳細

研究業績詳細

大内 克洋(オオウチ カツヒロ)

研究テーマ 医用生体工学と人工臓器工学
研究業績(論文) 1. Sakota D, Kosaka R, Nagaoka E, Ohuchi K, Tahara T, Arai H, Sakanoue I, McCurry KR, Okamoto T, Left ventricular assist device mode: Co-pulse left ventricular unloading in a working mode of ex vivo heart perfusion, J Heart Lung Transplant, Jun;42(6):707-15, 2023, doi: https;//doi.org/10.1016/j.healun.2023.01.009.(IF: 10.247)
2. Kosaka R, Sakota D, Sakanoue I, Niikawa H, Ohuchi K, Arai H, McCurry KR, Okamoto T, Real-time lung weight measurement during cellular ex vivo lung perfusion: An early predictor of transplant suitability, Transplantation, Mar 1; 107(3):628-38, doi: 10.1097/TP. 0000000000004380, 2023.(IF:5.385)
3. Hatakenaka K, Hijikata W, Fujiwara T, Ohuchi K, Inoue Y, Prevention of thrombus formation in blood pump by mechanical circular orbital excitation of impeller in magnetically levitated centrifugal pump, Artif Organs, Feb;47(2):425-31, doi: 10.1111/aor.14443, 2022. (IF: 3.094)
4. Sakurai H, Fujiwara T, Ohuchi K, Hijikata W, Inoue Y, Maruyama O, Tahara T, Yokota S, Tanaka Y, Takewa Y, Mizuno T, Arai H. Innovative experimental animal models for real-time comparison of antithrombogenicity between two oxygenators using dual extracorporeal circulation circuits and indocyanine green fluorescence imaging, Artif Organs, Jan 47(1):77-87, 2023.(IF: 3.094)
5. Kosaka R, Sakota D, Niikawa H, Ohuchi K, Arai H, McCurry KR, Okamoto T, Lung thermography during the initial reperfusion period to assess pulmonary function in cellular ex vivo lung perfusion, Artif Organs, Aug;46(8):1522-1532, doi: 10.1111/aor.14219, 2022. (IF: 2.259)
6. Sakota D, Kosaka R, Niikawa H, Ohuchi K, Arai H, McCurry KR, Okamoto T, Optical oxygen saturation imaging in cellular ex vivo lung perfusion to assess lobular pulmonary function, Biomed Opt Express, Dec 14;13(1):328-343, 2021.(IF: 3.921)
7. Nakajima Y, Kawase T, Suzuki R, Sugino T, Onogi S, Kawashima K, Ouchi K, Finite element method analysis and strucutre design of stiffness-tunable beam-shaped material, Sensors and Materials, 33(5);1703-16, 2021.(IF: 0.759)
8. Sakurai H, Fujiwara T, Ohuchi K, Hijikata W, Inoue Y, Seki H, Tahara T, Yokota S, Ogata A, Mizuno T, Arai H, Novel application of indocyanine green fluorescence imaging for real-time detection of thrombus in a membrane oxygenator, Artif Organs, Oct;45(10):1173-82, 2021 (IF: 2.259)
9. Seki H, Fujiwara T, Hijikata W, Murashige T, Tahara T, Yokota T, Ogata A, Ohuchi K, Mizuno T, Arai H, Evaluation of real-time thrombus detection method in a magnetically levitated centrifugal blood pump using a porcine left ventricular assist circulation model, Artif Organs, Jul;45(7):726-35, 2021.(IF: 2.259)
10. Mizuno T, Ohuchi K, Fujiwara T, Oi K, Nagaoka E, Oishi K, Yashima M, Takeshita M, Arai H, Development of novel heart positioner for minimally invasive coronary surgery, Ann Thorac Surg, 110(5); 1746-1750, 2020. (IF: 3.639)
11. Nakajima Y, Suzuki R, Suzuki Y, Sugino T, Kawase T, Onogi S, Seki H, Fujiwara T, Ouchi K, Surction-fixing surgical device for assisting liver manipulation with laparoscopic forceps, Int J Comput Assist Radiol Surg, 15(10): 1653-1664, 2020. (IF: 2.473)
12. Seki H, Fujiwara T, Hijikata T, Murashige T, Maruyama T, Yokota S, Ogata A, Ouchi K, Mizuno T, Arai H, Verification of a thrombus induction method at the target point inside the blood pump using a fibrinogen coating for a thrombus detection study, Artif Organs, 44(9): 968-975, 2020. (IF: 2.259)
13. Sakota D, Fujiwara T, Ohuchi K, Kuwana K, Yamazaki H, Kosaka R, Nishida M, Mizuno T, Arai H, Maruyama O, Development of a real-time and quantitative thrombus sensor for an extracorporeal centrifugal blood pump by near-infrared light, Biomed Opt Express, 9(1);190-201,2017. (IF: 3.921)
14. Fujiwara T, Sakota D, Ohuchi K, Endo S, Tahara T, Murashige T, Kosaka R, Oi K, Mizuno T, Maruyama O, Arai H. Optical Dynamic Analysis of Thrombus Inside a Centrifugal Blood Pump During Extracorporeal Mechanical Circulatory Support in a Porcine Model. Artif Organs, 41(10):893-903, 2017. (IF: 2.259)
15. Sakota D, Fujiwara T, Ouchi K, Kuwana K, Yamazaki H, Maruyama O. Development of an optical detector of thrombus formation on the pivot bearing of a rotary blood pump. Artif Organs, 40(9);834-41, 2016. (IF: 2.259)
16. Sakota D, Murashige T, Kosaka R, Fujiwara T, Ouchi K, Nishida M, Maruyama O. Noninvasive optical imaging of thrombus formation in mechanical circulatory support devices. J Biorheol, 30:6-12, 2016. (IF: 0.333)
17. Yoshiki H, Tadano K, Ban D, Ohuchi K, Tanabe M, Kawashima K. Development of contactless cauterization device for surgery using a steam-jet, Journal of Biomedical Engineering and Medical Imaging, Nov 3(6),1-12 2016
18. Yoshiki H, Tadano K, Ban D, Ohuchi K, Tanabe M, Kawashima K. Surgical energy device using steam jet for robotic assisted surgery, Conf Proc IEEE Eng Med Biol Soc. 2015:6872-5, 2015. (IF: 0.91)
19. Ugaki S, Honjo O, Nakakura M, Douguchi T, Itagaki A, Yokoyama N, Ohuchi K, Takatani S, Sano S, Transfusion-Free Neonatal Cardiopulmonary Bypass Using a TinyPump, Ann Thorac Surg, 90(5); 1615-21, 2010. (IF: 3.639)
20. Sakota D, Sakamoto R, Sobajima H, Yokoyama N, Waguri S, Ohuchi K, Takatani S, Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma, Artif Organs, 32(10); 785-91, 2008. (IF: 2.259)
21. Ohuchi K, Hoshi H, Watanabe N, Kido K, Yokoyama Y, Asama J, Shinshi T, Shimokohbe A, Yoshikawa M, Takatani S. Mechanical circulatory support systems at Tokyo Medical and Dental University, Biocybernetics and Biomed Eng, 27(1/2); 159-65, 2007. (IF: 2.537)
22. Ohuchi K, Hoshi H, Iwasaki Y, Ishihara K, Yoshikawa M, Ugaki S, Ishino K, Osaki S, Kotani Y, Sano S, Takatani S. Feasibility of a tiny centrifugal blood pump (TinyPump) for pediatric extracorporeal circulatory support, Artif Organs, 31(5); 408-412, 2007. (IF: 2.259)
23. Watanabe N., Arakawa Y., Sou A., Kataoka H., Ohuchi K., Fujimoto T., and Takatani S. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator, Physiological Measurement, 28;531-545,2007. (IF: 2.309)
24. Watanabe N., Sakota D., Ohuchi K., S. Takatani. Deformability of Red Blood Cells and its Relation to Blood Trauma in Rotary Blood Pumps. Artif. Organs, 31(5);352-358, 2007. (IF: 2.259)
25. Yokoyama N, Suzuki M, Hoshi H, Ohuchi K, Fujimoto T, Takatani S, Feasibility of a TinyPump System for Pediatric CPB, ECMO and Circulatory Assitance: Hydrodynamic Performances of the Modified Pump Housing for Implantable TinyPump, ASAIO J, 53; 742-6, 2007. (IF: 2.678)
26. Ugaki S, Ishino K, Osaki S, Kotani Y, Honjo O, Hoshi H, Yokoyama N, Ohuchi K, Takatani S, Sano S, Efficacy of a miniature centrifugal rotary pump (TinyPump) for transfusion-free cardiopulmonary bypass in neonatal piglets, ASAIO J, 53(6):675-9, 2007. (IF: 2.678)
27. Watada M, Saisho R, Kim YJ, Ohuchi K, Takatani S, Um YS, The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices, Conf Proc IEEE Eng Med Biol Soc, 2007:1035-8, 2007. (IF: 0.91)
28. Hoshi H, Asama J, Hijikata W, Hara C, Shinshi T, Yasuda T, Ohuchi K, Shimokohbe A, Takatani S. Hemolytic performance of a maglev disposable rotary blood pump (MedTech Dispo): Effects of maglev gap clearance and surface roughness. Artif Organs, Dec;30(12):949-54, 2006. (IF: 2.259)
29. Kido K, Hoshi H, Watanabe N, Kataoka H, Ohuchi K, Asama J, Shinshi T, Yoshikawa M, Takatani S. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump). Artif Organs. May;30(5):392-9, 2006. (IF: 2.259)
30. Ohuchi K, Takatani S. Currently available ventricular-assist devices: capabilities, limitations and future perspectives. Expert Rev Med Devices. Mar;3(2):195-205, 2006. (IF: 2.200)
31. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. Nov-Dec;11(11-12):1658-66, 2005. (IF: 3.508)
32. Kobayashi K, Ohuchi K, Hoshi H, Morimoto N, Iwasaki Y, Takatani S. Segmented polyurethane modified by photopolymerization and cross-linking with 2-methacryloyloxyethyl phosphorylcholine polymer for blood-contacting surfaces of ventricular assist devices. J Artif Organs. 8(4):237-44, 2005. (IF: 1.223)
33. Takatani S, Hoshi H, Tajima K, Ohuchi K, Nakamura M, Asama J, Shimshi T, Yoshikawa M. Feasibility of a miniature centrifugal rotary blood pump for low-flow circulation in children and infants. ASAIO J. Sep-Oct;51(5):557-62, 2005. (IF: 2.678)
34. Hoshi H, Asama J, Shinshi T, Ohuchi K, Nakamura M, Mizuno T, Arai H, Shimokohbe A, Takatani S. Disposable magnetically levitated centrifugal blood pump: design and in vitro performance. Artif Organs. Jul;29(7):520-6, 2005. (IF: 2.259)
35. Takatani S, Matsuda H, Hanatani A, Nojiri C, Yamazaki K, Motomura T, Ohuchi K, Sakamoto T, Yamane T. Mechanical circulatory support devices (MCSD) in Japan: current status and future directions. J Artif Organs. 8(1):13-27, 2005. (IF: 1.223)
36. Hoshi H, Katakoa K, Ohuchi K, Asama J, Shinshi T, Shimokohbe A, Takatani S. Magnetically suspended centrifugal blood pump with a radial magnetic driver. ASAIO J. Jan-Feb;51(1):60-4, 2005. (IF: 2.678)
37. Takatani S, Sakamoto T, Ohuchi K, Nakamura M, Mizuno T, Arai H. One piece ultracompact totally implantable electromechanical total artificial heart for permanent use. ASAIO J. Sep-Oct;48(5):538-45, 2002. (IF: 2.678)
38. Ohuchi K, Fukui Y, Sakuma I, Shibata N, Honjo H, Kodama I. A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Trans Biomed Eng. Jan;49(1):18-30, 2002. (IF: 4.424)
39. Takahashi K, Uemura M, Watanabe N, Ohuchi K, Nakamura M, Fukui Y, Sakamoto T, Takatani S. Estimation of left ventricular recovery level based on the motor current waveform analysis on circulatory support with centrifugal blood pump. Artif Organs. Sep;25(9):713-8, 2001. (IF: 2.259)
40. Yoshino M, Uemura M, Takahashi K, Watanabe N, Hoshi H, Ohuchi K, Nakamura M, Fujita H, Sakamoto T, Takatani S. Design and evaluation of a single-pivot supported centrifugal blood pump. Artif Organs. Sep;25(9):683-7, 2001. (IF: 2.259)
41. Ohuchi K, Kikugawa D, Takahashi K, Uemura M, Nakamura M, Murakami T, Sakamoto T, Takatani S. Control strategy for rotary blood pumps. Artif Organs. May;25(5):366-70, 2001. (IF: 2.259)
42. Sakuma I, Haraguchi T, Ohuchi K, Fukui Y, Kodama I, Toyama J, Shibata N, Hosoda S. A model analysis of aftereffects of high-intensity DC stimulation on action potential of ventricular muscle. IEEE Trans Biomed Eng. Feb;45(2):258-67, 1998. (IF: 4.424)

43. Ohuchi K, Fukui Y, Sakuma I, Shibata N, Honjo H, Takatani S, Kodama I, Computer Simulation Analysis of Shock Intensity- and Phase- Dependence of High-Intensity DC Stimulation Aftereffects on Action Potential of Ventricular Muscle, Environmental Medicine, 47; 69-71, 2003
44. Ohuchi K, Hatoh E, Yuhki A, Nakamura M, Sakamoto T, Takatani S. Automatic control of the implantable centrifugal blood pump based on analysis of the motor current waveform. J of Congestive Heart Failure and Circulatory Support 2001; 1(4): 431-435.
45. Ohuchi K, Yuhki A, Nakamura M, Sakamoto T, Takatani S. Development of a compact, seal-less, tripod-supported centrifugal blood pump. J of Congestive Heart Failure and Circulatory Support 2001; 1(4): 413-417.
46. Nakamura M, Takatani S, Ohuchi K, Sakamoto T, Homma A, Tatsumi E, Uesho K, Taenaka Y, Masuzawa T. Oxygen-demand-based physiological control of the total artificial heart. J of Congestive Heart Failure and Circulatory Support 2001; 1(4): 201-206.
47. Takatani S, Nakamura M, Ohuchi K, Nogawa M, Sakamoto T. Ultracompact, Completely Implantable Electro-mechanical permanent TAH. Journal of Congestive Heart Failure and Circulatory Support, 1(4);161-166, 2001
48. Takatani S, Nakamura M, Ohuchi K, Nogawa M, Sakamoto T. Ultracompact, Completely Implantable Electro-mechanical pulsatile VAD system. Journal of Congestive Heart Failure and Circulatory Support, 1(4);407-412, 2001

49. 吉木均、只野耕太郎、伴大輔、大内克洋、田邉稔、川嶋健嗣, 水蒸気噴流を用いた非接触凝固・止血法, 日本コンピュータ外科学会誌 Vol.18,No.1, pp.39-47. Apr 2016.
50. 大内克洋, 叶学, 三井和幸, 高谷節雄. 心筋細胞電気機械モデルによる電気機械帰還現象と機械的負荷低減効果のシミュレーション解析. ライフサポート, 2008
51. 大内克洋. 機械的循環補助装置装着による心筋細胞電気生理応答のシミュレーション解析.-JSAO Grant受賞レポート. 人工臓器33巻3号, 284-5, 2004
52. 中村真人、本間章彦、高谷節雄、大内克洋、坂本 徹、上所邦広、巽 英介、妙中義之、増澤 徹. 酸素消費量モニタを利用した全人工心臓の流量制御法の開発. 循環制御 21(4); 419-426, 2000.
53. 大内克洋. 心筋細胞の直流通電電気刺激後作用に関する研究. ライフサポート, Vol.9(3): 1471-4, 1997


研究者 教育活動