HOME > 研究業績詳細

研究業績詳細

六車 仁志(ムグルマ ヒトシ)

研究テーマ バイオエンジニアリング、バイオナノエレクトロニクス
研究業績(論文) ●査読付き原著論文
[1] T. Tomai, H. Iwasa, T. Tanaka, A. Hiratsuka, Y. Hoshino, K. Tsuji, T. Kishimoto, H. Muguruma, “Low-Potential Operation of Direct Electron Transfer Biosensor Strip with Single-Walled Carbon Nanotubes and Flavin Adenine Dinucleotide Glucose Dehydrogenase,” IEEE Sensors Letters, 7 (2023) 4500704.
[2] K. Suzuki, H. Muguruma, H. Iwasa, T. Tanaka, A. Hiratsuka, T. Shimizu, Y. Hoshino, K. Tsuji, T. Kishimoto, “Amperometric Biosensor Strip with Carbon Nanotube and Ketone Body 3-Hydroxybutyrate Dehydrogenase,” IEEE Sensors Journal, 23 (2023) 1778-1785.
[3] M.Seki, R. Wada, H. Muguruma, “Electrochemical behavior of intramolecular cyclization reaction of catecholamines at carbon nanotube/carboxymethylcellulose electrode,” Journal of Electroanalytical Chemistry, 918 (2022) 116486. 
[4] T. Fukuda, H. Muguruma, H. Iwasa, A. Hiratsuka, T. Tanaka, K. Tsuji, T. Kishimoto, “Xylose-Insensitive Direct Electron Transfer Biosensor Strip with Single-Walled Carbon Nanotubes and Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase,” IEEE Tran. Nanotechnology, 20 (2021) 610-618.
[5] R. Wada, S. Takahashi, H. Muguruma, N. Osakabe, “Electrochemical Analysis of Coffee Extractions at Different Roasting Levels Using a Carbon Nanotube Electrode,” Analytical Sciences, 37 (2021) 377-380.
[6] R. Wada, S. Takahashi, H. Muguruma, “New perspective on ECE mechanism of monohydroxycinnamic acid oxidation with carbon nanotube electrode,” Electrochimica Acta, 359 (2020) 359, 136964.
[7] H. Iwasa, A. Hiratsuka, T. Tanaka, K. Tsuji, T. Kishimoto, Y. Watanabe, Y. Hoshino, H. Muguruma, “Xylose-Insensitive Direct Electron Transfer Biosensor Strip with Single-Walled Carbon Nanotubes and Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase,” IEEE Sensors Journal, 20 (2020) 12522-12529.
[8] R. Wada, S. Takahashi, H. Muguruma, N. Osakabe, “Electrochemical Detection of Curcumin in Food with A Carbon Nanotube-Carboxymethylcellulose Electrode,” Analytical Sciences, 36 (2020) 1113-1118.
[9] S. Takahashi, R. Wada, H. Muguruma, N. Osakabe, “Analysis of Chlorogenic Acids in Coffee with A Multi-walled Carbon Nanotube Electrode,” Food Analytical Methods, 13 (2020) 923-932.
[10] T. Fukuda, H. Muguruma, H. Iwasa, T. Tanaka, A. Hiratsuka, T. Shimizu, K. Tsuji, T. Kishimoto, “Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube /carboxymethylcellulose electrode,” Analytical Biochemsitry, 590 (2020) 113533.
[11] S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, “Selective Detection of Rutin in The Presence of Ascorbic Acid with A Carbon Nanotube Electrode,” Japanese Journal of Applied Physics, 59 (2020) SDD02.
[12] S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, “Electrochemical determination with a long-length carbon nanotube electrode of quercetin glucosides in onion, apple peel, and tartary buckwheat,” Food Chemistry, 300 (2019) 125189. 
[13] S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, “Simultaneous Electrochemical Determination of Isoquercitrin and Epigallocatechingallate at A Carbon Nanotube Electrode,” Electrochemitry, 87 (2019) 242-244. 
[14] Y. Yoshimi, D. Oino, H. Ohira, H. Muguruma, E. Moczko, S. A. Piletsky, “Size of Heparin-Imprinted Nanoparticles Reflects the Matched Interactions with the Target Molecule,” Sensors, 19 (2019) 2415.
[15] S. Murakami, S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, “Polyphenol analysis in black tea with carbon nanotube electrode,” Analytical Sciences, 35 (2019) 529-534.
[16] A. Suzuki, K. Ishida, H. Muguruma, H. Iwasa, T. Tanaka, A. Hiratsuka, K. Tsuji, T. Kishimoto, “Diameter dependence of single-walled carbon nanotubes with flavin adenine dinucleotide glucose dehydrogenase for direct electron transfer bioanodes,” Japanese Journal of Applied Physics, 58 (2019) 051015.
[17] A. Hiratsuka, H. Iwasa, H. Uzawa, A. Suzuki, H. Muguruma, “Direct-Electron-Transfer Bio-Nanoink with Single-Walled Carbon Nanotube and Aspergillus terreus var. aureus Flavin Adenine Dinucleotide Glucose Dehydrogenase,” ACS Omega, 4 (2019) 5776-5783.
[18] H. Muguruma, S. Murakami, S. Takahashi, N. Osakabe, H. Inoue, T. Ohsawa, “Separationless and Adsorptionless Quantification of Individual Catechins in Green Tea with a Carbon Nanotube− Carboxymethylcellulose Electrode,” Journal of Agricultural and Food Chemistry, 67 (2019) 943-954.
[19] K. Ishida, K. Orihara, H. Muguruma, H. Iwasa, A. Hiratsuka, K. Tsuji, T. Kishimoto, “Comparison of direct and mediated electron transfer in electrodes with novel fungal flavin adenine dinucleotide glucose dehydrogenase,” Analytical Sciences, 34 (2018) 783-787.
[20] K. Orihara, A. Hikichi, T. Arita, H. Muguruma, Y. Yoshimi, “Heparin molecularly imprinted polymer thin film on gold electrode by plasma-induced graft polymerization for label-free biosensor,” Journal of Pharmaceutical and Biomedical Analysis, 151 (2018) 324-330.
[21] H. Muguruma. A. Hikichi, T. Matsubayashi, “Characterization of Nitrogen-Rich Coating Films with Atmospheric-Pressure Plasma Generated by Re-Entrant Microwave Cavity,”Industrial and Engineering Chemistry Research, 56 (2017) 5296-5301.
[22] H. Iwasa, A. Hiratsuka, K. Yokoyama, H. Uzawa, K. Orihara, H. Muguruma, “Thermophilic Talaromyces emersonii Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase Bioanode for Biosensor and Biofuel Cell Applications,” ACS Omega, 2 (2017) 1660-1665.
[23] H. Muguruma, H. Iwasa, H. Hidaka, A. Hiratsuka, H. Uzawa, “Mediatorless Direct Electron Transfer between Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase and Single-Walled Carbon Nanotubes,” ACS Catalysis, 7 (2017) 725-734.
[24] A. Hikichi, H. Muguruma, H. Inoue, T. Ohsawa, “Selective Determination of Nicotinamide Adenine Dinucleotide in the Presence of Ascorbic Acid and Uric Acid at A Long-Length Carbon Nanotube Electrode,” Electrochemistry, 85 (2017) 13-16.
[25] Y. Inoue, Y. Okazaki, H. Muguruma, H. Inoue, T. Ohsawa, “Simultaneous Electrochemical Determination of Nicotinamide Adenine Dinucleotide and Ascorbic Acid at A Carbon Nanotube Electrode,” Analytical Sciences, 32 (2016) 797-799. 
[26] T. Matsubayashi, H. Hidaka, H. Muguruma, “Microwave-assisted atmospheric pressure plasma-polymerization of hexamethyldisiloxane,” Japanese Journal of Applied Physics, 55 (2016) 076201.
[27] H. Muguruma, Y. Inoue, H. Inoue, T. Ohsawa, “Electrochemical Study of Dopamine at Electrode Fabricated by Cellulose-Assisted Aqueous Dispersion of Long-Length Carbon Nanotube,” Journal of Physical Chemistry C, 120 (2016) 12284-12292.
[28] H. Furutaka, K. Nemoto, Y. Inoue, H. Hidaka, H. Muguruma, H. Inoue, T. Ohsawa, “Amperometric Biosensor Based on Glassy Carbon Electrode Modified with Long-Length Carbon Nanotube and Enzyme,” Japanese Journal of Applied Physics, 55 (2016) 058001.
[29] H. Hidaka, K. Nowaki, H. Muguruma, “Mechanism of amperometric biosensor with electronically type-controlled carbon nanotube,” Japanese Journal of Applied Physics, 55 (2016) 03DF01.
[30] Y. Inoue, T. Hoshino, H. Muguruma, “Electrochemical Behavior and Analytical Applications of Electronically Type-Sorted Carbon Nanotube Electrode,” Sensors and Materials, 28 (2016) 61-73.
[31] H. Muguruma, T. Hoshino, R. Fujita, T. Sumii, S. Kudo, “Adhesion and alignment of nonparenchymal cells onto a patterned surface with a two-step plasma polymerization process,” Plasma Processes and Polymers, 12 (2015) 746-754.
[32] H. Muguruma, T. Hoshino, K. Nowaki, “Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase,” ACS Applied Materials and Interfaces, 7 (2015) 584-592.
[33] T. Hoshino, T. Inoue, H. Muguruma, “Amperometric biosensor with composites of carbon nanotube, hexaamineruthenium(III)chloride, and plasma-polymerized film,” IEICE Transaction on Electronics, E96-C (2013) 1536-1540.
[34] T. Hoshino, H. Muguruma, “NADH sensing using neutral red functionalized carbon nanotube/plasma-polymerized film composite electrode,” IEICE Transaction on Electronics, E95-C (2012) 1300-1303.
[35] T. Hoshino, H. Muguruma, Selective detection of NADH with neutral red functionalized carbon nanotube/plasma-polymerized film composite electrode, Electrochemistry, 80 (2012) 85-87.
[36] T. Hoshino, S. Sekiguchi, H. Muguruma, “Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase,” Bioelectrochemistry, 84 (2012) 1-5.
[37] H. Muguruma, T. Hoshino, Y. Matsui, “Enzyme biosensor based on plasma-polymerized film covered carbon nanotube layer grown directly on a flat substrate,” ACS Applied Materials and Interfaces, 3 (2011) 2445-2450.
[38] T. Hoshino, H. Muguruma, “Amperometric biosensor based on carbon nanotube functionalized by redox plasma-polymerized film,” Japanese Journal of Applied Physics, 50 (2011) 085202.
[39] H. Muguruma, H. Takahashi, “Protein patterning on functionalized surface prepared by selective plasma polymerization,” Surface Coatings and Technology, 205 (2010) 2490-2494.
[40] H. Muguruma, “Plasma-polymerized films for biochip design,” Plasma Processes and Polymers, 7 (2010) 151-162.
[41] H. Takahashi, N. Murata, H. Muguruma, “Plasma polymerization for protein patterning: reversible formation with fullerene modification,” IEICE Transaction on Electronics, E93-C (2010) 211-213.
[42] K. Furuya, O. Numakami, N. Yagi, S. Hori, T. Sugaya, K. Komori, M. Mori, Y. Okano, H. Muguruma, M. Asada, “Analysis of terahertz oscillator using negative differential resistance dual-channel transistor and integrated antenna,” Japanese Journal of Applied Physics, 48 (2009) 04C146.
[43] Y. Matsui, M. Yoshizawa, T. Hoshino, H. Muguruma, “Optimization of carbon nanotube layer formation on plasma-polymerized thin film for enzyme biosensor,” Sensors and Materials, 20 (2008) 289-298.
[44] H. Muguruma, “Biofuel cell based on a complex between glucose oxidase and a plasma-polymerized film containing a redox site,” IEICE Transaction on Electronics, E91-C (2008) 1811-1815.
[45] H. Muguruma, S. Yoshida, M. Urata, K. Fujisawa, Y. Matsui, “An amperometric biosensor for glucose based on a composite electrode of glucose dehydrogenase, carbon nanotubes, and plasma-polymerized thin films,” Electrochemistry, 76 (2008) 545-548.
[46] Y. Matsui, T. Hoshino, M. Yoshizawa, H. Muguruma, “NADH sensing using a carbon nanotube electrode reinforced with a plasma-polymerized thin film,” Electrochemistry, 76 (2008) 610-613.
[47] H. Muguruma, “Quantitative characterization of surface amino groups of plasma-polymerized films prepared from nitrogen-containing monomers for bioelectronic applications,” IEICE Transaction on Electronics, E91-C (2008) 963-967.
[48] A. Hiratsuka, N. Murata, H. Muguruma, K. Matsumura,“Selective adsorption of an antibody onto a plasma-polymerized film for protein patterning,” IEICE Transaction on Electronics, E91-C (2008) 978-980.
[49] A. Hiratsuka, K. Fujisawa, H. Muguruma, “Amperometric biosensor with the glucose dehydrogenase and plasma-polymerized thin films,” Analytical Sciences, 24 (2008) 483-486.
[50] H. Muguruma, Y. Shibayama, Y. Matsui, “Amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme,” Biosensors and Bioelectronics, 23 (2008) 827-832.
[51] A. Hiratsuka, H. Fukui, Y. Suzuki, H. Muguruma, K. Sakairi, T. Matsushima, Y. Maruo, K. Yokoyama, “Sulphur dioxide plasma modification on poly(methyl methacrylate) for fluidic devices,” Current Applied Physics, 8 (2008) 198-205.
[52] H. Muguruma, Y. Matsui, Y. Shibayama, “Carbon nanotube−plasma polymer-based amperometric biosensors: enzyme-friendly platform for ultrasensitive glucose detection,” Japanese Journal of Applied Physics, 46 (2007) 6078-6082.
[53] H. Muguruma, N. Murata, N. Kawasaki, S. Kuretoko, S. Kudo, “Growth of endothelial cells on surfaces modified by a plasma-polymerized coating,” IEICE Transaction on Electronics, E90-C (2007) 1844-1847.
[54] H. Muguruma, “Plasma-polymerized films for biosensors II,” Trends in Analytical Chemistry, 26 (2007) 433-443.
[55] H. Muguruma, T. Sekikawa, S. Ueno, N. Kubota, “Diffusion-controlled size-selective chloride ion sensing in the presence of bromide ion using a thin, nanoporous, plasma-polymerized coating on an Ag/AgCl electrode,” Thin Solid Films, 515 (2007) 6978-6980.
[56] H. Muguruma, S. Miura, N. Murata, “Adsorption of antibody protein onto plasma-polymerized film characterized by atomic force microscopy and quartz crystal microbalance,” IEICE Transaction on Electronics, E90-C (2007) 649-651.
[57] H. Muguruma, Y. Kase, N. Murata, K. Matsumura, “Adsorption of glucose oxidase onto plasma-polymerized film characterized by atomic force microscopy, quartz crystal microbalance, and electrochemical measurement,” Journal of Physical Chemistry B, 110 (2006) 26033-26039.
[58] H. Muguruma, S. Hotta, “Conformational polymorphism and thermochemical analysis of 5,5"'-bis[(2,2,5,5-tetramethyl-1-aza-2,5-disila-1-cyclopentyl)ethyl]-2,2':5',2":5",2"'-quaterthiophene,” Journal of Physical Chemistry B, 110 (2006) 23075-23080.
[59] H. Muguruma, H. Uehara, “Electron transfer mediated biosensor with plasma-polymerized film containing redox site,” IEICE Transaction on Electronics, E89-C (2006) 1781-1785.
[60] H. Muguruma, Y. Kase, “Structure and biosensor characteristics of complex between glucose oxidase and plasma-polymerized nanothin film,” Biosensors and Bioelectronics, 22 (2006) 737-743.
[61] A. Hiratsuka, K. Kojima, H. Muguruma, K.–H. Lee, H. Suzuki, I. Karube, “Electron transfer mediator micro-biosensor fabrication by organic plasma process,” Biosensors and Bioelectronics, 21 (2005) 957-964.
[62] H. Muguruma, Y. Kase, H. Uehara, “Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase: toward high throughput fabrication of bioelectronic devices without chemical modifications,” Analytical Chemistry, 77 (2005) 6557-6562.
[63] H. Muguruma, N. Itazu, S. Miura, “Characterization of diffusion-controlled mass transport through nanoporous nanothin films plasma-polymerized on a sputtered platinum electrode,” Journal of Physical Chemistry B, 109 (2005) 18839-18845.
[64] Y. Kase, H. Muguruma, “Amperometric glucose biosensor based on mediated electron transfer between immobilized glucose oxidase and plasma-polymerized thin film of dimethylaminomethylferrocene on sputtered gold electrode,” Analytical Sciences, 20 (2004) 1143-1146.
[65] H. Muguruma, M. Ishikawa, J. Nakada, S. Hotta, Y. Takahashi, “Pyroelectricity in polyurea thin film having oligothiophene segments in the main chain prepared by vapor deposition polymerization,” Japanese Journal of Applied Physics, 43 (2004) L859 - L861.
[66] 六車仁志、平塚淳典、プラズマ重合膜を基盤とする新世代バイオセンサー、分析化学、83 (2004) 393-409.
[67] A. Hiratsuka, H. Muguruma, K.–H. Lee, I. Karube, “Organic plasma process for simple and substrate-independent surface modification of polymeric BioMEMS devices,” Biosensors and Bioelectronics, 19 (2004) 1667-1672.
[68] Y. Kase, H. Muguruma, A. Hiratsuka, I. Karube, “A thin-film glucose biosensor based on hexamethyldisiloxane plasma-polymerized film: influence of its film thickness on the platinum electrode,” IEICE Transaction on Electronics, E87-C (2004) 142-147.
[69] H. Muguruma, T. K. Saito, S. Hotta, “Conformational polymorphs in vacuum evaporated thin film of 5,5"'-bis[(2,2,5,5-tetramethyl-1-aza-2,5-disila-1-cyclopentyl)ethyl]-2,2':5',2":5",2"'-quaterthiophene,” Thin Solid Films, 445 (2003) 26-31.
[70] H. Muguruma, K. Matsumura, S. Hotta, “Vapor polymerization deposition of polyimide thin films having oligothiophene segments in the main chain,” Materials Letters, 57 (2003) 2688-2692.
[71] R. Yano, D. Okada, C. C. Yap, K. Mabuchi, H. Muguruma, T. K. Saito, “MALC, a novel microinjection method for loading of macromolecules into cultured neurons,” NeuroReport, 13 (2002) 1263-1266.
[72] H. Muguruma, K. Matsumura, S. Hotta, “Molecular orientation of oligothiophene-based polyamide thi films fabricated by vapor deposition polymerization,” Thin Solid Films, 405 (2002) 77-80.
[73] T. K. Saito, H. Muguruma, K. Mabuchi, “Photodynamic assistance increases the efficiency of the process in animal cells,” Biotechnology Letters, 24 (2002) 309-314.
[74] A. Hiratsuka, K. Kojima, H. Suzuki, H. Muguruma, K. Ikebukuro, I. Karube, “Integration of microfabricated needle-type glucose sensor devices with a novel thin-film Ag/AgCl electrode and plasma-polymerized thin film: mass production techniques,” Analyst, 126 (2001) 658-663.
[75] 六車仁志、平塚淳典、小嶋謙一、鈴木博章、池袋一典、軽部征夫、半導体プロセスで作製するニードル型グルコースバイオセンサー:新規薄膜銀/塩化銀参照電極とプラズマ重合膜の利用、電気学会論文誌、E分冊、E-121 (2001) 445-451.
[76] T. K. Saito, M. Takahashi, H. Muguruma, E. Niki, K. Mabuchi, “Phototoxic process after rapid photosensitive membrane damage of 5,5"-bis(aminomethyl)-2,2':5',2"-terthiophene dihydrochloride,” Journal of Photochemistry and Photobiology B: Biology, 61 (2001) 114-121.
[77] H. Muguruma, R. Nagata, R. Nakamura, K. Sato, S. Uchiyama, I. Karube, “Sensor chip using a plasma-polymerized film for surface plasmon resonance biosensors: reliable analysis of binding kinetics,” Analytical Sciences, 16 (2000) 347-348.
[78] A. Hiratsuka, H. Muguruma, R. Nagata, R. Nakamura, K. Sato, S. Uchiyama, I. Karube, “Mass transport behavior of electrochemical species through plasma-polymerized thin film on platinum electrode,” Journal of Membrane Science, 175 (2000) 25-34.
[79] H. Muguruma, A. Hiratsuka, I. Karube, “Thin film glucose biosensor based on plasma-polymerized film: simple design for mass production,” Analytical Chemistry, 72 (2000) 2671-2675.
[80] H. Miyachi, A. Hiratsuka, K. Ikebukuro, K. Yano, H. Muguruma, I. Karube, “Application of polymer-embedded proteins to the fabrication of DNA array,” Biotechnology and Bioengineering, 69 (2000) 323-329.
[81] V. Hernández, H. Muguruma, S. Hotta, J. Casado, J. T. López Navarrete, “A combined spectroscopic and theoretical study of a series of aminomethyl end-capped oligothiophenes with potential application in thin film devices,” Journal of Physical Chemistry A, 104 (2000) 735-740.
[82] J. T. López Navarrete, J. Casado, H. Muguruma, S. Hotta, V. Hernández, “Vibrational spectra of charged defects in a series of alpha, alpha'-bis(aminomethyl) end-capped oligothiophenes induced by chemical doping with iodine,” Journal of Molecular Structure, 521 (2000) 239-247.
[83] J. Casado, H. Muguruma, S. Hotta, V. Hernández, J. T. López Navarrete, “Oligothiphene compounds for thin films. raman study of their electronic properties,” Boletin de la Sociedad Espanola de Ceramica Y Vidrio, 39 (2000) 411-414.
[84] A. Hiratsuka, H. Muguruma, S. Sasaki, K. Ikebukuro, I. Karube, “A glucose sensor with a plasma-polymerized thin film fabricated by dry processes,” Electroanalysis, 11 (1999) 1098-1100.
[85] H. Muguruma, I. Karube, “Plasma-polymerized films for biosensors,” Trends in Analytical Chemistry, 18 (1999) 62-68.
[86] H. Muguruma, M. Yudasaka, S. Hotta, “Vapor polymerization deposition of new polyamide thin films having oligothiophene segments in the main chain,” Thin Solid Films, 339 (1999) 120-122.
[87] H. Muguruma, S. Hotta, “Morphological and spectroscopic studies of thin films of quaterthiophenes having extra bulky terminal groups,” Thin Solid Films, 339 (1999) 137-141.
[88] E. O. Dela Cruz, H. Muguruma, W. I. Jose, H. Pedersen, “Molecular imprinting of methyl pyrazines,” Analytical Letters, 32 (1999) 841-854.
[89] S. Sasaki, E. Kai, H. Miyachi, H. Muguruma, K. Ikebukuro, H. Ohkawa, I. Karube, “Direct determination of etfenprox using surface plasmon resonance,” Analytica Chimica Acta, 363 (1998) 229-233.
[90] T. Saito, Nick A. Hartell, H. Muguruma, S. Hotta, S. Sasaki, M. Ito, I. Karube, “Light dose- and time- dependent phototoxic manner in cell membrane damage,” Photochemistry and Photobiology, 68 (1998) 745-748.
[91] H. Muguruma, K. Kobiro, S. Hotta, “Structural and conformational studies of quaterthiophene having extra bulky terminal groups,” Chemistry of Materials, 10 (1998) 1459-1467.
[92] Y.-S. Kim, K. Ikebukuro, H. Muguruma, I. Karube, “Photogeneration of NADPH oligothiophenes coupled with ferredoxin-NADP reductase,” Journal of Biotechnology, 59 (1998) 213-220.
[93] Y. Nomura, H. Muguruma, K. Yano, A. Kugimiya, S. McNiven, K. Ikebukuro, I. Karube, “Selective recognition of 2,4-dichlorophenoxyacetic acid using a molecular imprinting polymer,” Analytical Letters, 31 (1998) 973-980.
[94] R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, H. Pedersen, “A plasma-polymerized film for surface plasmon resonance immunosensing,” Analytical Chemistry, 69 (1997) 4649-4652.
[95] K. Nakanishi, H. Muguruma, I. Karube, “A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors,” Analytical Chemistry, 68 (1996) 1695-1700.
[96] K. Nakanishi, M. Adachi, Y. Sako, Y. Ishida, H. Muguruma, I. Karube, “Detection of the red tide-causing plankton Alexandrium affine by a piezoelectric immunosensor using a novel method of immobilizing antibodies,” Analytical Letters, 29 (1996) 1247-1258.
[97] H. Muguruma, I. Karube, M. Saito, “Sulfur containing plasma treatment for the introduction of thiol groups onto polyethylene surfaces,” Chemistry Letters, 25 (1996) 283-284.
[98] H. Muguruma, T. Saito, A. Hiratsuka, I. Karube, S. Hotta, “Structural characterization and surface modification of evaporated thin films of 5,5'"-bis(aminomethyl)-2,2':5',2":5",2'"-quaterthiophene and its dihydrochloride,” Langmuir, 12 (1996) 5451-5457.
[99] H. Muguruma, T. Saito, S. Sasaki, S. Hotta, I. Karube, “Synthesis and characterization of alpha, alpha'-bis(aminomethyl)oligothiophenes and their related compounds,” Journal of Heterocyclic Chemistry, 33 (1996) 173-178.
[100] H. Muguruma, S. Hotta, I. Karube, “Crystal and molecular structure of 5,5'-bis[(2,2,5,5-tetramethyl-1-aza-2,5-disila-1-cyclopentyl)methyl]-2,2'-bithiophene,” Chemistry Letters, 25 (1996) 501-502.
[102] A. Kugimiya, J. Matsui, T. Takeuchi, K. Yano, H. Muguruma, A. V. Elgersma, I. Karube, “Recognition of sialic acid using molecularly imprinted polymer,” Analytical Letters, 28 (1995) 2317-2323.
[103] M. Watanabe, H. Muguruma, M. Asada, S. Arai, “Low temperature (~420°C) expitaxial growth of CaF2/Si(111) by ionized-cluster-beam technique,” Japanese Journal of Applied Physics, 29 (1990) 1803-1804.

●総説
[1] 六車仁志、見る,聴く,触る-バイオセンサの動向、電気学会誌、2012, 132, 413-416.
[2] 六車仁志、プラズマ重合有機超薄膜表面への細胞・タンパク質の吸着成長挙動、表面、2007, 45, 126-133.
[3] 六車仁志、プラズマ薄膜を用いたバイオセンサ、化学センサ、2007, 23, 126-133.
[4] 六車仁志、表面プラズモン共鳴バイオセンサー、ケミカルエンジニアリング、2003, 737-743.
[5] 六車仁志、表面プラズモン共鳴、ぶんせき、2003, 38-42.
[6] 六車仁志、齋藤敬、水溶性ターチオフェンの光生化学的利用、豊田研究報告第55号、2002, 49-54.
[7] 六車仁志、プラズマ重合膜を用いたバイオセンサーの設計、表面、2001, 39, 126-133.
[8] 六車仁志、プラズマ重合膜を基盤とする半導体バイオセンサー作製のための新プロセス開発、豊田研究報告第54号、2001, 75-80.
[9] 六車仁志、バイオセンサーのインターフェース設計-プラズマ重合膜の利用、化学と工業、2001年、2月号、140-143.
[10] H. Muguruma, T. K. Saito, “Photobiological applications of water-soluble terthiophene,” Transworld Research Network –Recent Research Developments in Photochemistry and Photobiology, 2001, 5, 141-153.
[11] H. Muguruma, S. Hotta, “Syntheses and characterization of alpha, omega-bis(aminomethyl)oligothiophene and their related compounds,” Transworld Research Network –Recent Research Developments in Physical Chemistry, 1999, 3, 209-232.
[12] 六車仁志、コンビナトリアルモレキュラーインプリント、ぶんせき、トピックス、2000年、2月号、107-108.

●査読付き国際学会プロシーディングス
[1] A. Suzuki, H. Muguruma, H. Iwasa, T, Tanaka, A. Hiratsuka, K. Tsuji, T. Kishimoto, Diameter dependence of single-walled carbon nanotube with flavin adenine dinucleotide glucose dehydrogenase for direct electron transfer biosensor, 32st International Microprocesses and Nanotechnology Conference, Hiroshima, Japan, 30 October, 2019.
[2] S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, Electrochemical determination of quercetin glucosides in food with a carbon nanotube electrode, 32st International Microprocesses and Nanotechnology Conference, Hiroshima, Japan, 30 October, 2019.
[3] S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, Simultaneous Electrochemical Determination of Isoquercitrin and Epigallocatechingallate Electrode with A Carbon Nanotube Electrode, 10th International conference on Molecular Electronics and Bioelectronics(M&BE10), Nara, Japan, 25-27 June, 2019.
[4] A. Suzuki, H. Muguruma, H. Iwasa, A. Hiratsuka, H. Uzawa, A Biological Ink Composed by Glycan Chain Rich Enzyme and Single-Walled Carbon Nanotube/Surfactant Aqueous Solution for Printable Biosensor, 10th International conference on Molecular Electronics and Bioelectronics(M&BE10), Nara, Japan, 25-27 June, 2019.
[5] K. Orihara. H. Muguruma, H. Iwasa, A. Hiratsuka, H. Uzawa, Biosensors and Biofuel Cells Based on Anode with Single-Walled Carbon Nanotube and Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase, 31st International Microprocesses and Nanotechnology Conference, Sapporo, Japan, 13-16 November, 2018.
[6] S. Murakami, S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, Electrochemical Determination of Individual Catechins in Green Tea with Electrode Fabricated by Long-Length Carbon Nanotube Dispersed Solution, 31st International Microprocesses and Nanotechnology Conference, Sapporo, Japan, 13-16 November, 2018.
[7] K. Ishida, A. Suzuki, K. Orihara, H. Muguruma, H. Iwasa, A. Hiratsuka, K. Tshiji, T. Kishimoto,, Comparative Study of direct and mediated electron transfer in biosensors with flavin adenine dinucleotide glucose dehydrogenase, 31st International Microprocesses and Nanotechnology Conference, Sapporo, Japan, 13-16 November, 2018.
[8] S. Takahashi, S. Murakami, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, Long-length carbon nanotube/carboxymethylcellulose composite thin film electrode for cathechin detection in green tea, 14th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures and 26th International Colloquium on Scanning Probe Microscopy (ACSIN-14&ICSPM26), Sendai, Japan, 21-25 October, 2018.
[9] A. Suzuki, K. Ishida, K. Orihara, H. Muguruma, H. Iwasa, A. Hiratsuka, K. Tsuji, T. Kishimoto, Direct Electron Transfer between Debundled Single-Walled Carbon Nanotube and Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase. 14th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures and 26th International Colloquium on Scanning Probe Microscopy (ACSIN-14&ICSPM26), Sendai, Japan, 21-25 October, 2018.
[10] A. Hikichi, T. Arita, H. Muguruma, Y. Yoshimi, “Heparin Molecularly Imprinted Polymer Fabricated by Plasma-Induced Polymerization for Quartz Crystal Microbalance Biosensor,” 9th International conference on Molecular Electronics and Bioelectronics(M&BE9), Kanazawa, Japan, 26-28 June, 2017.
[11] H. Hidaka, A. Hikichi, H. Muguruma, “Ampermetric biosensors with electronically type-sorted carbon nanotube and enzyme,” 9th International Symposium on Organic Molecular Electronics, Niigata, Japan, 18-20 May, 2016.
[12] H. Hidaka, H. Muguruma, H. Iwasa, A. Hiratsuka, H. Uzawa, Amperometric biosensor with Single-Walled Carbon Nanotube and Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase, 29th International Microprocesses and Nanotechnology Conference, Kyoto, Japan, 8-11 November, 2016.
[13] Y. Inoue, H. Muguruma, H. Inoue, T. Ohsawa, Electrochemical Study of Dopamine at Electrode Fabricated by Long-Length Carbon Nanotube Dispersed Solution, 29th International Microprocesses and Nanotechnology Conference, Kyoto, Japan, 8-11 November, 2016.
[14] H. Hidaka, K. Nowaki, H. Muguruma, Mechanism of Amperometric Biosensor with Electronically Type-Controlled Carbon Nanotube, Eighth International conference on Molecular Electronics and Bioelectronics(M&BE8), Tokyo, Japan, 22-24 June, 2015.
[15] Y. Inoue, A. Sugawara, H. Muguruma, Electrochemical Biosensor with Electronically Type-Controlled Carbon Nanotube and Glucose Dehydrogenase, Eighth International conference on Molecular Electronics and Bioelectronics(M&BE8), Tokyo, Japan, 22-24 June, 2015.
[16] H. Furutaka, T. Naito, H. Muguruma, Amperometric Biosensor with Nanocarbon and Electron Transfer Mediator for Lower Detection Potential, Eighth International conference on Molecular Electronics and Bioelectronics(M&BE8), Tokyo, Japan, 22-24 June, 2015.
[17] H. Muguruma, T. Hoshino, R. Fujita, T. Sumii, S. Kudo, “Patterning of Endothelial Cells and Hepatic Stellate Cells with Two Step Plasma-polymerized Processes,” 5th International Conference on Plasma Medicine (ICPM5), Nara, Japan, 18-23 May 2014.
[18] Y. Kase, H. Muguruma, “Structure observation of enzyme embedded in plasma-polymerized film and its biosensor performance,” ISPlasma2014 / IC-PLANTS2014:6th International Symposium on Advanced Plasma Science and its Applications for Nitrides and Nanomaterials / 7th International Conference on Plasma-Nano Technology & Science, Nagoya, Japan 2-6 March 2014
[19] T. Hoshino, H. Muguruma, “Enzyme Biosensor with Metalic Single-walled Carbon Nanotube,” 6th International Symposium on Surface Science (ISSS-6), Tokyo, Japan 11-15 December, 2011
[20] T. Inoue, T. Hoshino, H. Muguruma, “Enzyme Biosensor with Carbon Nanotube: Toward Lower Detection Potential,” 6th International Symposium on Surface Science (ISSS-6), Tokyo, Japan 11-15 December, 2011
[21] T. Hoshino, S. Sekiguchi, Y. Iwase, H. Muguruma, “Amperometric Biosensor with Carbon Nanotube, Plasma-polymerized Film, and Glucose Dehydrogenase for Low Working Potential,” Sixth International conference on Molecular Electronics and Bioelectronics(M&BE6), Sendai, Japan, 16-18 March, 2011.
[22] T. Hoshino, H. Muguruma, “Incorporation of redox mediator into Carbon Nanotube Reinforce by Plasma-polymerized Film: Low Potential Detection of NADH,” Sixth International conference on Molecular Electronics and Bioelectronics(M&BE6), Sendai, Japan, 16-18 March, 2011.
[23] H. Takahashi, T. Ii, A. Irie, H. Muguruma, Protein patterning with selective adsorption on surface by partial plasma polymerization , The 3rd International Conference on Plasma-Nanotechnology & Science, Meijo University, Nagoya, Japan, 11-12 March, 2010.
[24] H. Takahashi, H. Muguruma, Partial treatment by organic plasma for protein patterning, 7th International Workshop on "Microwave Discharges: Fundamentals and Applications, 23-27 September, 2009, Hamana-lake, Japan.
[25] Y. Matsui, T. Hoshino, M. Yoshizawa, H. Muguruma, Direct growth of carbon nanotube onto substrate for amperometric biosensor application, Fifth International conference on Molecular Electronics and Bioelectronics(M&BE5), 15-18 March, 2009, Miyazaki, Japan.
[26] H. Takahashi, T. Kimbara, H. Muguruma, Protein Patterning Technique with Plasma Process, International Symposium on Surface Sciences and Nanotechnology, Fifth International conference on Molecular Electronics and Bioelectronics(M&BE5), 15-18 March, 2009, Miyazaki, Japan.
[27] Y. Matsui, T. Hoshino, M. Yoshizawa, H. Muguruma, Chemical and Biochemical Sensor with Carbon Nanotube and Plasma-polymerized Film, International Symposium on Surface Sciences and Nanotechnology (ISSS-5), 9-13 November, 2008, Tokyo, Japan.
[28] H. Takahashi, T. Kimbara, H. Muguruma, Protein Patterning Technique with Nanomaterials and Plasma Process, International Symposium on Surface Sciences and Nanotechnology (ISSS-5), 9-13 November, 2008, Tokyo, Japan.
[29] N. Murata, H. Muguruma, K. Matsumura, “Selective Adsorption of Protein onto Plasma Polymer for Micropatterning Formation,” 9th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures (ACSIN-9), 11-15 November, 2007, Tokyo, Japan.
[30] H. Muguruma, Y. Shibayama, “Amperometric biosensor based on carbon nanotube and plasma-polymerized nanothin film,” The Ninth World Congress on Biosensors, 10-12 May 2006, Tronto, Canada.
[31] A. Hiratsuka, K. Kojima, H. Suzuki, H. Muguruma, K. Mitsubayashi, K. Ikebukuro, I. Karube, “Arrayed micro biosensor with a novel Ag/AgCl electrode and plasma-polymerized film” The Sixth World Congress on Biosensors, 24-26 May 2000, San Diego, USA.
[32] S. Sasaki, R. Nagata, E. Kai, H. Miyachi, H. Muguruma, K. Ikebukuro, H. Ohkawa, I. Karube, “A novel surface plasmon resonance sensor chip for pesticides,” The Fifth World Congress on Biosensors, Inter-Continental Hotel, 3-5 June 1998, Berlin, Germany.
[33] T. Saito, M. Miyauchi, H. Muguruma, T. Suzuki, N. Kakuta, T. Watanabe, K. Hashimoto, K. Mabuchi, “Photocatalyst coated capillary increases efficiency of membrane penetration process of microinjection,” World Congress on Medical Physics and Biomedical Engineering, 23-28 July 2000, Chicago, USA.
[34] H. Muguruma, T. Hanajiri, M. Saito, “Study of introduction methods of amino group to polymer surface by exposure to new reactive plasma,” Proceedings of the 2nd International Conference on Reactive Plasmas and 11th Symposium on Plasma Processing, January, 1994, 491-494. Yokohama, Japan.


研究者 教育活動 researchmap(JST)