HOME > 研究業績詳細

研究業績詳細

末原 義之(スエハラ ヨシユキ)

研究テーマ 整形外科学、ゲノム医療、骨軟部腫瘍、骨軟部肉腫、転移性骨腫瘍、腫瘍用人工関節、プロテオミクス、融合遺伝子、Tyrosin kinase、GIST、肺癌
研究業績(論文) <学術雑誌に発表した英語論文(査読有り)>
1. NTRK2 expression in gastrointestinal stromal tumors with a special emphasis on the clinicopathological and prognostic impacts. Sci Rep. 2024 14(1):768.
2. Detection of Novel Tyrosine Kinase Fusion Genes as Potential Therapeutic Targets in Bone and Soft Tissue Sarcomas Using DNA/RNA-based Clinical Sequencing. Clin Orthop Relat Res. 2023 Nov 28. Online ahead of print.
3. Two-year crizotinib monotherapy induced durable complete response of pediatric ALK-positive inflammatory myofibroblastic tumor. Pediatr Blood Cancer. 2023 70(8)
4. CALML5 is a novel diagnostic marker for differentiating thymic squamous cell carcinoma from type B3 thymoma. Thorac Cancer. 2023 14(12):1089-1097.
5. Expression of paired box 9 defines an aggressive subset of lung adenocarcinoma preferentially occurring in smokers. Histopathology. 2023 82(5):672-683.
6. Establishment of Rapid and Accurate Screening System for Molecular Target Therapy of Osteosarcoma. Technol Cancer Res Treat. 2022;21:15330338221138217.
7. Dedifferentiated liposarcoma in the extremity and trunk wall: A multi-institutional study of 132 cases by the Japanese Musculoskeletal Oncology Group (JMOG). Eur J Surg Oncol. 2023 49(2):353-361.
8. Perioperative Adriamycin plus ifosfamide vs. gemcitabine plus docetaxel for high-risk soft tissue sarcomas: randomised, phase II/III study JCOG1306. Br J Cancer. 2022 127(8):1487-1496.
9. Molecular and clinicopathological analysis revealed an immuno-checkpoint inhibitor as a potential therapeutic target in a subset of high-grade myxofibrosarcoma. Virchows Arch. 2022 481(4):1-17.
10. Clinical relevance of PD-L2 expression in surgically resected lung adenocarcinoma. Lung Cancer. 2022 168:50-58.
11. IRE1α-XBP1 but not PERK inhibition exerts anti-tumor activity in osteosarcoma. Discov Oncol. 2021 12(1):57. doi: 10.1007/s12672-021-00453-2.
12. Distinct properties of pure- and mixed-type high-grade fetal lung adenocarcinomas by genetic profiling and transcription factor expression. Virchows Arch. 2022 480(3):609-619. doi: 10.1007/s00428-021-03247-7.
13. Novel patient-derived models of desmoplastic small round cell tumor confirm a targetable dependency on ERBB signaling. Dis Model Mech. 2022 Jan 1;15(1)
. doi: 10.1242/dmm.047621.
14. Programmed death-ligand 1 expression and its associations with clinicopathological features, prognosis, and driver oncogene alterations in surgically resected lung adenocarcinoma. Lung Cancer. 2021 Nov;161:163-170. doi: 10.1016/j.lungcan.2021.09.011.
15. iPSC-Derived Neoantigen-Specific CTL Therapy for Ewing Sarcoma. Cancer Immunol Res. 2021 Oct;9(10):1175-1186. doi: 10.1158/2326-6066.CIR-21-0193.
16. Highly sensitive fusion detection using plasma cell-free RNA in non-small-cell lung cancers. Cancer Sci. 2021 Oct;112(10):4393-4403. doi: 10.1111/cas.15084. Epub 2021 Aug 18.
17. Transcription start site-level expression of thyroid transcription factor 1 isoforms in lung adenocarcinoma and its clinicopathological significance. J Pathol Clin Res. 2021 Jul;7(4):361-374. doi: 10.1002/cjp2.213. Epub 2021 May 20.
18. Colchicine protects against cartilage degeneration by inhibiting MMP-13 expression via PLC-γ1 phosphorylation. Osteoarthritis Cartilage. 2021 Nov;29(11):1564-1574. doi:10.1016/j.joca.2021.08.001. Epub 2021 Aug 20.
19. NTRK fusion in Japanese colorectal adenocarcinomas. Scientific Reports. 2021 Mar 11;11(1):5635. doi: 10.1038/s41598-021-85075-y. PMID: 33707574.
20. Nodular fasciitis adjacent to the left humerus in a 15-year-old boy. Human Pathology: Case Reports Volume 23, March 2021, Article number 200478. https://doi.org/10.1016/j.ehpc.2021.200478.
21. Comprehensive molecular and clinicopathological profiling of desmoid tumors. European Journal of Cancer Eur J Cancer. 2021 Mar;145:109-120. doi: 10.1016/j.ejca.2020.12.001. PMID: 33444924.
22. Histological Characteristics of Lung Adenocarcinoma with Uncommon Actionable Alterations: Special Emphasis on MET exon 14 Skipping Alterations. Histopathology. 2021 Jun;78(7):987-999. doi: 10.1111/his.14311. PMID: 33249657.
23. Establishment of PDX model derived from soft tissue tumor. Journal of Toxicologic Pathology 2021 Jan;34(1):89-93. doi: 10.1293/tox.2020-0061. PMID: 33627948.
24. Correction to: A case of primary distal-type epithelioid sarcoma of the lumbar vertebra with a review of literature. Virchows Arch. 2020 Oct 25. doi: 10.1007/s00428-020-02955-w. Online ahead of print. PMID: 33103211.
25. Symptomatic venous thromboembolism in patients with malignant bone and soft tissue tumors: a prospective multicenter cohort study. Annals of Surgical Oncology 2020 Nov 9. doi: 10.1245/s10434-020-09308-6. Online ahead of print.PMID: 33165723.
26. Nanostring-based screening for tyrosine kinase fusions in inflammatory myofibroblastic tumors. Scientific Reports 2020 Oct 30;10(1):18724. doi: 10.1038/s41598-020-75596-3.
27. Immunological status of peripheral blood is associated with prognosis in bone and soft-tissue sarcoma patients. Oncology Reports. 2021 Mar;21(3):212. doi: 10.3892/ol.2021.12473. PMID: 33510813.
28. High MUC6 expression level defines a distinct clinicopathological subset of pulmonary invasive mucinous adenocarcinoma. Modern Pathology Mod Pathol. 2021 Apr;34(4):786-797. doi: 10.1038/s41379-020-00690-w. PMID: 33024306.
29. Identification of a novel MAN1A1-ROS1 fusion gene through mRNA-based screening for tyrosine kinase gene aberrations in leiomyosarcoma. Clin Orthop Relat Res. 2021 Apr 1;479(4):838-852. doi: 10.1097/CORR.0000000000001548. PMID: 33196586.
30. Next generation sequencing for comprehensive analysis of the molecular and clinical characteristics of primary esophageal malignant melanoma. Histopathology 2021 Jan;78(2):240-251. doi: 10.1111/his.14210. PMID: 32654197.
31. Clinicopathological characteristics of lung adenocarcinoma with compound EGFR mutations. Human Pathology 2020 Sep;103:42-51. doi: 10.1016/j.humpath.2020.07.007. PMID: 32673682.
32. Molecular and clinicopathological features of colorectal adenocarcinoma with enteroblastic differentiation. Histopathology 2020 Sep;77(3):492-502. doi: 10.1111/his.14158. PMID: 32438490.
33. Preoperative denosumab treatment with curettage maybe a risk factor for recurrence of giant cell tumor of bone. Journal of Orthopaedic Surgery 2020 Jan-Apr;28(2):2309499020929786. doi: 10.1177/2309499020929786.PMID: 32539628.
34. Transformation from EGFR/PTEN co‐mutated lung adenocarcinoma to small cell carcinoma in lymph node metastasis. Pathology International 2020 May;70(5):295-299. doi: 10.1111/pin.12919. PMID: 32162763.
35. Assessment of Predictive Biomarkers of the Response to Pazopanib Based on an Integrative Analysis of High-grade Soft-tissue Sarcomas. Clin Orthop Relat Res. 2020 Nov;478(11):2461-2476. doi: 10.1097/CORR.0000000000001322.PMID: 32567826.
36. Identification of Novel CD74-NRG2α Fusion From Comprehensive Profiling of Lung Adenocarcinoma in Japanese Never or Light Smokers. Journal of Thoracic Oncology 2020 Jun;15(6):948-961. doi: 10.1016/j.jtho.2020.01.021. PMID: 32036070.
37. Nintedanib Inhibits Epithelial Mesenchymal Transition via TGF-β/Smad pathway in Alveolar Epithelial Cells. Respiratory Investigation 2020 Jul;58(4):275-284. doi: 10.1016/j.resinv.2020.01.003. PMID: 32359980.
38. Activation of insulin-like growth factor-1 receptor confers acquired resistance to osimertinib in non-small cell lung cancer with EGFR T790M mutation. Thoracic Cancer. 2020 Jan;11(1):140-149. doi: 10.1111/1759-7714.13255. PMID: 31758670.
39. The Role of Chemotherapy and Radiotherapy in Extraskeletal Osteosarcoma. European Journal of Cancer 2020 Jan;125:130-141. doi: 10.1016/j.ejca.2019.07.029. PMID: 31806415.
40. Detection of sarcoma circulating tumor cells using microfluidic chip type cell sorter and next-generation sequencing. Scientific Reports 9(1):20047. 2019.
41. Molecular and clinicopathological analyses of esophageal carcinosarcoma with special reference to the differentiation mechanism. Virchows Archiv 475(4):415-424 2019.
42. Protein Expression Profiles Corresponding to Histological Changes with Denosumab Treatment in Giant Cell Tumors of Bone. Proteomics Clin Appl 13(5). 2019.
43. Clinical genomic sequencing of pediatric and adult osteosarcoma reveals distinct molecular subsets with potentially targetable alterations. Clinical Cancer Research 25(21):6346-6356. 2019.
44. Role of FBXW7 in the quiescence of gefitinib-resistant lung cancer stem cells in EGFR-mutant non-small cell lung cancer. Bosnian Journal of Basic Medical Sciences. 19(4):355-367 2019.
45. Massively parallel sequencing of tenosynovial giant cell tumors reveals novel CSF1 fusion transcripts and novel somatic CBL mutations. International Journal of Cancer. 145(12):3276-3284. 2019.
46. Comprehensive assay for the molecular profiling of cancer by using DNA and RNA hybridization capture-based target enrichment from formalin- fixed paraffin-embedded specimens. Cancer Science 110(4):1464-1479 2019.
47. Multicenter experience with large panel next generation sequencing in patients with advanced solid cancers in Japan. Japanese Journal of Clinical Oncology 49(2):174-182 2019.
48. Squamous cell carcinoma arising from chronic osteomyelitis massively expanding into the medullary cavity: A case report. Human Pathology Case reports 16: 100289 2019.
49. Fibrocartilaginous mesenchymoma of the tibia with predominant microcystic features: A case report and literature review. Human Pathology Case reports 16: 100288 2019.
50. Proteomic signatures corresponding to the SS18/SSX fusion gene. Oncotarget 9:37509-37519 2018.
51. The first study on locomotive syndrome in lower amputees. J Adv Med Med Res. 27(5): 1-10, 2018.
52. PPP2R1A regulated by PAX3/FOXO3 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget 9:25206-25215, 2018.
53. A comprehensive clinicopathological analysis of gastric adenocarcinoma with enteroblastic differentiation using next generation sequencing with emphasis on the distinction from so-called hepatoid adenocarcinoma. Human Pathology 78, 79-88, 2018.
54. KCTD12 may be negatively regulated by KIT in gastrointestinal stromal tumors. Oncotarget 9:27016-27026, 2018.
55. The development of the short-form “25-question Geriatric Locomotive Function Scale”. J Adv Med Med Res. 25(10): 1-13, 2018.
56. IRE1α-XBP1 inhibitors exerted anti-tumor activities in Ewing's sarcomas. Oncotarget 9:14428-14443. 2018.
57. Non-small cell lung carcinoma with diffuse co-expression of thyroid transcription factor-1 and ΔNp63/p40. Human Pathology S0046-8177(18)30037-6. 2018.
58. Pediatric soft tissue tumor of the upper arm with LMNA-NTRK1 fusion. Human Pathology 2018 72:167–173.
59. High-throughput functional evaluation of variants of unknown significance in EGFR. Science Translational Medicine 2017 9, (416): eaan6566.
60. Development of Novel Therapeutic Strategies in Cancers and Sarcomas. Juntendo Medical Journal 63(2), 95-97. 2017.
61. Is DNA mismatch repair deficiency status a biomarker for immune checkpoint inhibitors in lung adenocarcinoma patients?: Microsatellite instability analysis using the Promega panel. Lung Cancer 2017 110, 26–31.
62. Cabozantinib and dastinib exert anti-tumor activity in alveolar soft part sarcoma. PLOS ONE 2017 12(9): e0185321.
63. Arterial Thoracic Outlet Syndrome (aTOS) and Cerebellar Infarction Following a Stress Fracture of the First Rib and Extensive Callus: A case report. J Bone Joint Surg. Case Connector 2017 7 (3) e64.
64. A case of epithelioid hemangioma of the right third rib in a 55-year-old man. International journal of clinical and experimental pathology. 2016 9(9): 9681-9686.
65. A case of secondary chondrosarcoma with TP53 mutation arising from fibrous dysplasia. International journal of clinical and experimental pathology. 2016; 9(7): 7230-7236.
66. A comparative study of 2 screening tools for locomotive syndrome (the “Loco-check” and the “GLFS-25”): An orthopedic outpatient-based survey. Br J Med Med Res. 2016 17(5): 1-13.
67. A case report of using nivolumab for a malignant melanoma patient with rheumatoid arthritis. Int Canc Conf J. 2016 5(4) 192–196.
68. Reduced argininosuccinate synthetase expression in refractory sarcomas. Oncotarget. 2016 7(43) 70832-70844.
69. Clinicopathological effects of protein phosphatase 2, regulatory subunit A, alpha mutations in gastrointestinal stromal tumors. Modern Pathology. 2016 29, 1424–1432.
70. Large skin ulcer due to a subcutaneous orthopedic implant after bevacizumab therapy: A case report. J Bone Joint Surg. Case Connector 2016 6 (3): e70.
71. Paget's sarcoma with sarcoma-specific TP53 mutation arising from a Japanese patient. International journal of clinical and experimental pathology. 2016 9(3): 3978-3986.
72. An Outpatient-based Survey on the Recognition of Locomotive Syndrome in Japan: The Results of three Years of Surveys. Br J Med Med Res. 2016 15(9) BJMMR.26127 1-9.
73. Expression of F-actin-capping protein subunit beta is associated with cell growth and motility in epithelioid sarcoma. BMC cancer. 2016 16(1):206.
74. Protein expression profiling of giant cell tumors of bone treated with denosumab. PLoS ONE. 2016 11(2): e0148401.
75. TERT promoter mutations are rare in bone and soft tissue sarcomas of Japanese patients. Molecular and Clinical Oncology. 2016 4(1):61-64.
76. TERT promoter mutations are a rare event in gastrointestinal stromal tumors. SpringerPlus 2015, 4:836.
77. Skeletal metastasis of unknown primary origin at the initial visit: A retrospective analysis of 286 cases. PLoS ONE. 2015 10(6).
78. Sarcomatous transformation of EGFR and TP53 mutation-positive metastatic adenocarcinoma of the lungs, masquerading as a primary pleomorphic sarcoma of the proximal femur. International journal of clinical and experimental pathology. 2015; 8(3): 3270-3278.
79. Spindle cell lipoma of the wrist, occurring in a distinctly rare location: a case report with review of literature. International journal of clinical and experimental pathology. 2015; 8(3): 3299-3303.
80. The Recognition of Locomotive Syndrome in 2014: A Cross-sectional Study in the Orthopeadic Outpatients in Tokyo. Br J Med Med Res. 2015 6(6) 606-616.
81. Distinct clinicopathologic features of NAB2-STAT6 fusion gene variants in solitary fibrous tumor with emphasis on the acquisition of highly malignant potential. Hum Pathol. 2015 46(3): 347-56.
82. A case of low-grade fibromyxoid sarcoma with unusual central necrosis in a 77-year-old man confirmed by FUS-CREB3L2 gene fusion. International Journal of Surgery Case Reports. 2014 5(12): 1123-1127.
83. Rationale for co-targeting IGF-1R and ALK in ALK fusion positive lung cancer. Nature Medicine 2014 20(9): 1027-34.
84. Deeply located low-grade fibromyxoid sarcoma with FUS-CREB3L2 gene fusion in a 5-year-old boy with review of literature. Diagn Pathol 2014 9(1): 163.
85. A case of primary spindle cell variant of embryonal rhabdomyosarcoma of the prostate. Int J Clin Exp Pathol 2014 7(8):5181-5.
86. Eggshell-like mineralized recurrent lesion in the popliteal region after treatment of giant cell tumor of bone with denosumab. Skeletal Radiol 2014 43(12):1767-72.
87. Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates. Acta Neuropathologica 2014 127(5):747-59.
88. Giant-cell tumor of bone arising in the anterior rib with a positive expression of GPX-1: a case report and review of the literature. Int Canc Conf J 2014 3:178–182.
89. Proteomic Profile of Epithelioid Sarcoma. J Proteomics Bioinform. 2014 7: 158-165.
90. An Outpatient-based Survey about the Recognition of Locomotive Syndrome and the Results of the Loco-check at a University Hospital in Tokyo. Br J Med Med Res. 2014 4: 3255-3268.
91. Pfetin as a risk factor of recurrence in gastrointestinal stromal tumors. BioMed Research International 2014 : 651935.
92. Proteomic approach to gastrointestinal stromal tumor identified prognostic biomarkers. J Proteomics Bioinform. 2014 7(1):10-16.
93. Tissue Sample Preparation for Biomarker Discovery. Methods in Molecular Biology, 2013 1002:13-23.
94. Proteomic technologies to develop biomarkers and functional analyses for bone and soft tissue tumors. J Proteomics Bioinform. 2013 S3-001.
95. Response to Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas. Cancer Discovery. 2013 3(6):630-5.
96. Proteomic approach towards personalized sarcoma treatment: Lessons from prognostic biomarker discovery in gastrointestinal stromal tumor. Proteomics Clin Appl. 2013 7(1-2):70-78.
97. The prognostic value of pfetin: A validation study in gastrointestinal stromal tumors using a commercially available antibody. Jpn J Clin Oncol. 2013 43(6):669-75.
98. p53 mutations may be involved in malignant transformation of giant cell tumor of bone through interaction with GPX1. Virchows Archiv. 2013 463:67-77.
99. Desmoplastic fibroma of the rib with cystic change: A case report with review of literature. Skeletal Radiol 2013, 43(5):703-8.
100. Desmoplastic fibroma of the scapula with fluorodeoxyglucose uptake on positron emission tomography: a case report and literature review. Int J Clin Exp Pathol 2013, 15;6:2230-6.
101. Gene expression network analysis of ETV1 reveals KCTD10 as a novel prognostic biomarker in gastrointestinal stromal tumor. PLoS ONE. 2013; 8(8).
102. Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res. 2012 18(24): 6599-608.
103. Discovery of biomarkers for osteosarcoma by proteomics approaches. Sarcoma. 2012:425636.
104. Malignant granular cell tumor with unusual long clinical course. An autopsy case with review of literatures. J Cancer Sci Ther. 2012, 4:260-263.
105. Low-grade myofibroblastic sarcoma of the distal femur. Int J Surg Case Rep, 2012; 4(2): 195-199.
106. Validation Study on Pfetin and ATP-dependent RNA Helicase DDX39 as Prognostic Biomarkers in Gastrointestinal Stromal Tumour. Jpn J Clin Oncol, 2012 42(8): 730-41.
107. Intraneural lipomatous tumor of the median nerve: Three case reports with a review of literature. Int J Surg Case Rep, 2012 3(9): 407-411.
108. Pedicle freezing with liquid nitrogen for malignant bone tumour in the radius: a new technique of osteotomy of the ulna. Journal of Orthopaedic Surgery, 2012 20(1):98-102.
109. Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. Journal of proteomics, 2012 75(4):1089-98.
110. Secernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics. Journal of proteomics, 2011 74(6): 829-42.
111. Proteomic analysis of soft tissue sarcoma. International Journal of Clinical Oncology, 2011 16(2): 727-33.
112. A case of secondary malignant giant-cell tumor of bone with p53 mutation after long-term follow-up. Hum Pathol. 2011 42(5): 727-33.
113. A case of de novo secondary malignant giant-cell tumor of bone with loss of heterozygosity of p53 gene that transformed within a short-term follow-up. Pathology Research and Practice, 2011 207(10):664-9.
114. Pfetin as a Prognostic Biomarker for Gastrointestinal Stromal Tumor: Validation Study in Multiple Clinical Facilities. Jpn J Clin Oncol, 2011 41(10): 1194-1202.
115. Metastatic Soft Tissue Tumors. Journal of Cancer Therapy, 2011 2(5): 746-751.
116. The surgical Treatment and Outcome of Pathological Fracture in Patients with Giant Cell Tumor of Bone. Surgical Science, 2011 2(5):228-231.
117. Late recurrence of giant cell tumor of bone after adjuvant treatment. Journal of Orthopaedic Surgery, 2010 18(1): 122-5.
118. Pfetin as a Prognostic Biomarker in Gastrointestinal Stromal Tumor: Novel Monoclonal Antibody and External Validation Study in Multiple Clinical Facilities. Jpn J Clin Oncol, 2010 40(1): 60-72.
119. Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics. Proteomics Clin Appl, 2010 4(5) 560-567.
120. Bone versus soft-tissue sarcomas in the elderly. Journal of Orthopaedic Surgery, 2010 18(1): 58-62.
121. GST-P1 as a histological biomarker of synovial sarcoma revealed by proteomics. Proteomics Clin Appl, 2009 3(5), 623-634.
122. Anatomic site-specific proteomic signatures of gastrointestinal stromal tumors. Proteomics Clin Appl, 2009 3(5), 584-59.
123. Pfetin, as a prognostic biomarker of gastrointestinal stromal tumors revealed by proteomics. Clin Cancer Res 2008 14: 1707-1717.
124. Pfetin predicts outcome for patients with gastrointestinal stromal tumors. Nature Clinical Practice Oncology 2008 5(7), 364-365.
125. Protein-expression profiles associated with clinicopathological features of bone and soft tissue sarcomas. Clin Orthop Relat Res. 2008 466(9):2099-2106.
126. Xanthoma of bone associated with lipoprotein lipase deficiency. Skeletal Radiol. 2008 37(12):1153-1156.
127. Myxoinflammatory fibroblastic sarcoma. J Orthop Sci. 2008 13(6):566-571.
128. Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas. Proteomics 15: 4402-4409, 2006.
129. Clear cell sarcoma arising from the chest wall. Journal of Orthopaedic Science 2004; 9: 171-174.
130. Intra-abdominal desmoplastic small round cell tumor. The result of ifosfamide-based chemotherapy. International Journal of Clinical Oncology 2004; 9: 134-138.
131. Periosteal osteosarcoma with secondary bone marrow involvement. Journal of Orthopaedic Science 2004; 9: 646-649.
132. Metastatic Bednar tumor with fibrosarcomatous change. Journal of Orthopaedic Science 2004; 9: 662-665.

<受賞>
・ 2020年 日本癌治療学会 優秀演題賞 
・ 2018年 日本医師会 日本医師会医学研究奨励賞 
・ 2013年 日本癌治療学会 最優秀演題賞 
・ 2008年 Connective Tissue Oncology Society (CTOS) Young Investigator Award
・ 2006年 財団法人 整形災害外科学研究助成財団 奨励賞
(医局内)
・ 末原 義之 2020年 順天堂大学整形外科 ベストペーパー賞
・ 末原 義之 2019年 順天堂大学整形外科 ベストペーパー賞
・ 末原 義之 2018年 順天堂大学整形外科 ベストペーパー賞
・ 末原 義之 2014年 順天堂大学整形外科同門会 奨励賞
・ 末原 義之 2004年 順天堂大学整形外科 ベストペーパー賞

<特許>
1. 出願日:平成18年10月20日/出願日・番号:特願2006-286087
公開日:平成20年5月1日/公開日・番号:特開2008-100958
発明の名称:消化管間質腫瘍(GIST)を処置するための医薬組成物、ならびに消化管間質腫瘍を患う患者の予後を予測するためのキットおよび方法
整理番号:006H1005(弊所整理番号:P060722)
登録番号:第5140808合
登録日:平成24年11月30日
2. 出願日:平成21年12月16日/出願日・番号:特願2009-285045「セセルニン−1の使用、滑膜肉腫の予後予測方法及び検査用試薬のキット」
3. 出願日:平成27年2月26日/出願日・番号:特願2015-036692「GISTの予後又は治療抵抗性の診断」
4. 出願日:平成27年7月31日/出願日・番号:特願2015-152170「チロシンキナーゼ融合遺伝子の検出法」

<研究費・助成金>
研究代表者:末原義之
1. 国立研究開発法人科学技術振興機構創発的研究支援事業 希少がん骨軟部腫瘍の融合遺伝子と相互排他性に注目した研究開発50,000,000円(2020-2027年度)_ XXXXX
2. 令和2年度上原記念生命科学財団 研究助成金 骨軟部腫瘍の相互排他性に基づいた治療標的探 5,000,000円 (2020年度)
3. 令和元年度内藤記念科学奨励金研究助成 骨軟部腫瘍の「小胞体ストレス」機能解析に基づいた新規治療法開発3,000,000円 (令和元年、2019年度)
4. 日本学術振興会(科学研究費補助金:挑戦的研究(萌芽))骨軟部腫瘍の「小胞体ストレス」機能解析に基づいた新規治療法開発 6,500,000円(2019-2021年度)_ 19K22694
5. 日本学術振興会(科学研究費補助金:基盤B)がんクリニカルシークエンス解析に基づいた「骨軟部腫瘍分子標的」の作用機序解明 17,160,000円(2019-2022年度)_ 19H03789
6. Loxo Oncology「軟部肉腫を有する日本人患者におけるがん遺伝子検査の有用性の検討」13,853,900円 (2018-2020年度)
7. 平成30年度日本医師会医学研究奨励 「希少がん」骨軟部腫瘍のがんプレシジョンメディシンデータベースに基づいた新規治療法開発 1,500,000円 (平成30年度)
8. 平成30 年度持田記念研究助成金 研究助成 「希少がん」軟部肉腫の疫学的特徴に基づいた NTRK 融合遺伝子陽性腫瘍の個別化医療開発 3,000,000円 (平成30年度)
9. 平成28年度 公益財団法人 臨床薬理研究振興財団 研究奨励金:「希少癌」軟部肉腫のキナーゼ阻害剤著効例に基づいた新規治療法開発 2000,000円(平成28年度)
10. 平成28年度 武田科学振興財団 医学系研究奨励:「希少がん」軟部肉腫のキナーゼ阻害剤著効症例に基づいた新規治療法の開発 2000,000円(平成28年度)
11. 日本学術振興会(科学研究費補助金:挑戦的萌芽研究)「「希少癌」骨軟部腫瘍のチロシンキナーゼ遺伝子転写変異体の探索 3,380,000円(平成28-29年度)_ 16K15670
12. 日本学術振興会(科学研究費補助金:国際共同研究加速基金_国際共同研究強化)「希少癌」骨軟部腫瘍の迅速な新規治療法の開発14,560,000円(平成29-30年度)15KK03534
13. 第一三共株式会社TaNeDS 網羅的tyrosine kinase遺伝子変異探索システムを用いた新規がん分子標的治療法の開発 10,000,000円(平成28年度)
14. 日本学術振興会(科学研究費補助金:基盤B)「希少癌」骨軟部腫瘍の迅速な新規治療法の開発16,400,000円(平成27-30年度)_ 15H04964
15. 平成26 年度上原記念生命科学財団 研究助成金 Nanostringを用いた癌分子標的治療の開発 5,000,000円 (平成26年度)
16. 平成26 年度公益財団法人 がんのこどもを守る会 研究助成 小児骨軟部腫瘍の融合遺伝子及び新規遺伝子変異に対してのタンパク質発現解析450,000円 (平成26年度)
17. 平成25 年度持田記念研究助成金 研究助成 免疫応答解析を用いた骨軟部肉腫の新規バイオマーカー及び治療標的の開発 3,000,000円 (平成25年度)
18. 平成25年度 公益財団法人佐川がん研究振興財団 が ん 研 究 助 成  骨軟部肉腫チロシンキナーゼ融合遺伝子の網羅的探索 1,000,000円(平成 25 年 )
19. 平成25年度 公益財団法人 がん集学的治療研究財団 一 般研究助成金 免疫応答解析に基づいた骨軟部腫瘍のバイオマーカーの開発 1,000,000円(平成25 年)
20. 日本学術振興会(科学研究費補助金:若手B)骨軟部腫瘍の新規治療法開発を目的としたプロテオーム解析3,640,000円(平成25-26年度)_ 25861342
21. 日本学術振興会(科学研究費補助金:若手B)タンパク質発現解析に基づいた骨軟部腫瘍バイオマーカーの大規模検証及び機能解析4,030,000円(平成22-24年度)_ 22791405
22. 日本学術振興会:平成22年度(平成22-24年) 海外特別研究員 研究課題名:骨軟部腫瘍のバイオマーカー・分子標的開発を目的とした遺伝子・タンパク質発現解析 (Protein- and Gene-expression profiles to develop prognostic biomarkers and molecular targets of bone and soft tissue tumors)受入施設:Diagnostic Molecular Pathology Laboratory, Memorial Sloan-Kettering Cancer Center, NY, USA(5,250,000円 x 2年) 平成22-24年度)
23. 平成21年度 財団法人 安田記念医学財団 海外研究助成(医師):腫瘍マーカー(予後予測マーカー)の開発を目的とした骨軟部腫瘍のプロテオーム解析 1,500,000 円(平成21年度)
24. 平成21年度 財団法人 病態代謝研究会 海外留学補助金:骨軟部腫瘍のバイオマーカー・分子標的開発を目的とした遺伝子・タンパク質発現解析 2,000,000 円(平成21年度)
25. 平成21年度 上原記念生命科学財団 研究奨励金 滑膜肉腫のバイオマーカー(予後予測マーカー)の開発を目的としたプロテオーム解析 2,000,000円(平成21年度)
26. 順天堂大学:平成21年度プロジェクト研究:悪性軟部腫瘍におけるプロテオーム解析および新たな腫瘍マーカー開発に関する研究 200,000円(平成21年度)
27. 順天堂大学:平成21年度学長特別共同プロジェクト研究滑膜肉腫の予後予測マーカーの開発を目的としたプロテオーム解析 400,000円(平成21年度)
28. 順天堂大学:平成20年度プロジェクト研究:悪性軟部腫瘍におけるプロテオーム解析および新たな腫瘍マーカー開発に関する研究:500,000円(平成20年度)
29. 順天堂大学:平成20年度学長特別共同プロジェクト研究:消化管間質腫瘍(GIST)におけるPfetinタンパク質の機能解析300,000円(平成20年度)
30. 日本学術振興会(科学研究費補助金:スタートアップ)プロテオーム解析による骨軟部腫瘍の腫瘍マーカー開発及び機能解析3,120,000円(平成20-21年度)
31. 平成18年度 財団法人 整形災害外科学研究助成財団; International Society of Orthopaedic Surgery and Traumatology (SICOT),「中外製薬奨励賞」1,000,000 円(平成18年度)

研究者 教育活動